

Strangeness Report

Federico Antinori INFN Padova - Italy

Contents

- → I concentrate on strange particle abundances (yields and ratios)
- QGP predictions
- Enhancement pattern
- Hadronic transport
- Thermal models
- Beyond equilibrium?
- The Φ
- Extras
- Conclusions

not covered: Resonances (Fachini), Spectra (Velkovska), Flow (Retiere), Pentaguarks (Jaffe), HBT (Magestro)

Two historic QGP predictions

- \bullet restoration of χ symmetry \rightarrow increased production of s
 - mass of strange quark in QGP expected to go back to current value
 - m_s ~ 150 MeV ~ Tc
 - → copious production of s̄s pairs, mostly by gg fusion

[Rafelski: Phys. Rep. 88 (1982) 331]

[Rafelski-Müller: P. R. Lett. 48 (1982) 1066]

- deconfinement → stronger effect for multi-strange
 - can be built using uncorrelated s quarks produced in independent microscopic reactions
 - strangeness enhancement increasing with strangeness content

[Koch, Müller & Rafelski: Phys. Rep. 142 (1986) 167]

• @ top SPS (NA57, $\int s_{NN} = 17.3 \, GeV$)

and (yesterday's news) @ RHIC (STAR, \(\sigma_{\text{NN}} = 200 \text{ GeV} \)

and (yesterday's news) @ low E SPS (NA57, \(\sum_{NN} = 8.8 \) GeV)

 qualitatively similar picture emerging from 8.8 to 200 GeV

Alternative definition of pA enhancement?

- e.g.: [Fischer: Nucl. Phys. A 715 (2003) 118]
- two-component model of particle production:

⇒ in pA:
$$Y_{pA} = [v/2 + 1/2] Y_{pp}$$
 (v = number of collisions)
= $N_{part} Y_{pp}/2$

enhancement "blamed" on projectile component only:
 usual enhancement: E alternative enhancement: F

$$(Y/N_{part})_{pA} = E \cdot (Y/N_{part})_{pp}$$

 $\rightarrow Y_{pA} = E [v/2 + 1/2] Y_{pp}$

$$Y_{pA} = [v/2 + F/2] Y_{pp}$$

• then: $(F - 1) = (E - 1) N_{part}$

reasonable for baryon number transfer, but do e.g. strange quarks know if they come from projectile or target?

 \rightarrow enhancement within pA appears even if pA yields \propto N_{part}

Hadronic transport

- Hadronic transport codes:
 - do reasonably well on singly strange particles
 - but fail to reproduce the production of multi-strange particles at SPS and RHIC
 - see for instance:
 - [Soff et al.: Phys. Lett. B471 (1999) 89],
 - [C.Greiner: nucl-th/0208080 and references there],
 - [STAR: nucl-ex/0307024],
 - [Huovinen & Kapusta: nucl-th/0310051]

[Huovinen & Kapusta: nucl-th/0310051]

Hadronic transport

Hadronic transport codes:

do reasonably well on singly strange particles

but fail to reproduce the production of multi-strange particles at

e],

rium value as a function of the local temperature. The upper set of curves start with the baryons in equilibrium at T_c , the lower set start with no baryons.

[Huovinen & Kapusta: nucl-th/0310051]

Hadronic transport

- Hadronic transport codes:
 - do reasonably well on singly strange particles

but fail to reproduce the production of multi-strange particles at SPS and RHIC

- see for instance:
 - [Soff et al.: Phys. Lett. B471 (1999) 89],
 - [C.Greiner: nucl-th/0208080 and references there],
 - [STAR: nucl-ex/0307024],
 - [Huovinen & Kapusta: nucl-th/0310051]
- they get closer if:
 - masses are reduced towards chiral values or string tension is enhanced with respect to ee/pp/pA
 - enhanced contribution from inelastic scattering during expansion
- Activity is still ongoing:
 - e.g.: [Capella: nucl-th/0303045; Subrata Pal et al.: nucl-th/0106074]
 - hadronic models are getting more and more exotic...

Meanwhile at the AGS...

- Nice new measurement: <u>= production close to threshold</u>, Au-Au @ 6 A GeV (E895) [P.Chung et al.: nucl-ex/0302021]
- At this energy RQMD works fine!

Thermal fits

 Thermal fits don't do too bad!

e.g.: brand new @ RHIC 200

- $T_{ch} = 160 \pm 10 \text{ MeV}$
- \bullet $\mu_B = 24 \pm 5 \text{ MeV}$

(STAR Preliminary)

 relative particle abundances ~ as expected at thermodynamical equilibrium for grand-canonical system, even for rare, multi-strange particles

T systematics

- it looks like Hagedorn was right!
 - if the resonance mass spectrum grows exponentially (and this seems to be the case), there is a maximum possible temperature for a system of hadrons
 - indeed, we don't seem to be able to get a system of hadrons with a temperature beyond T_{max} ~ 170 MeV!

T vs μ_{B} systematics

 the extracted freeze-out points at SPS and RHIC lay very close to the predicted QGP phase boundary

Canonical vs Grand Canonical

- Energy penalty to create a strange particle:
 - <u>Canonical</u>: computed taking into account also energy to create companion to ensure conservation of strangeness
 - Grand Canonical limit:
 just due to creation of particle itself. The rest of the system acts
 as a reservoir and "picks up the slack"

- removal of canonical suppression
 - increases with strangeness
 - ~ observed enhancements
 - detailed centrality dependence not reproduced (very crude modelling)

[Hamieh et al.: Phys. Lett. B486 (2000) 61]

• @ RHIC:

• @ RHIC:

- decrease of enhancements from SPS predicted
- order of magnitude of enhancements close
- again, model for V_{corr} vs N_{part} seems to be inadequate

Does this *explain* the observed enhancement pattern?

- a system <u>in eq.</u>, if it is large enough, is in GC eq., but being large in itself is not a sufficient condition for being GC!
 - if AA colls. were just a superposition of pp, they would have to be treated canonically all the same!
- the system must also know it is large...
 - it must know that an Ω^+ generated here can be compensated by, say, an Ω^- on the other side of the fireball!
 - what counts is the correlation volume
- "Canonical Suppression is removed!"
 - an observation, not an explanation

How is Canonical Suppression removed?

how does the system know it is large? how can information travel so quickly through the system?

- → not by conventional hadronic transport (no time!)
- natural if the system is coming back from deconfinement

How is Canonical Suppression removed?

- how does the system know it is large?
 how can information travel so quickly through the system?
- → not by conventional hadronic transport (no time!)
- natural if the system is coming back from deconfinement
- two recent ideas:
 - quantum coherence in the fireball [Stock: hep-ph/0312039]
 - can it be developed into testable model?
 - what about pA?
 - multi-particle interactions [Braun-Munzinger et al.: nucl-th/0311005]
 - only important close to phase boundary
 - if true, we are actually *measuring* Tc
 - microscopic mechanism to restore abundances to hadronic eq.

An equilibrium pre-diction

- mid-rapidity multi-strange/∧ @ 40 GeV SPS
 - NA57 vs [Becattini: private communication]
 - $\gamma_s = 1$, T from 4π fit to NA49 40 GeV [Becattini et al.: hep-ph/0310049] • using π^{\pm} , K^{\pm} , φ , Λ and $\overline{\Lambda}$
 - Λ and Λ dN/dy from NA57 fix μ_B and normalization
 - Prediction of $\Xi^- \Xi^+ \Omega^-$ and $\Omega^+ dN/dy$
 - total χ^2 /dof = 1.4 against values measured by NA57
 - → No parameter for multi-strange again, not bad...

\Lambda(1520)

 Λ(1520) deviates from sistematics (~ 1/2)

e.g.: [Markert: J. Phys. G 28 (2002) 1753]

→ we look for in-medium effects

we take fits very seriously!

Fit to NA49 data
[Becattini et al.: hep-ph/0310049]

Resonances @ RHIC

new: Λ(1520), K*(892), Δ(1232) in STAR at 200 GeV

- resonances show larger deviations from statistical fit
- rescattering vs regeneration?
 - see talk by P. Fachini

Non equilibrium: γ_s

- ullet 4π yield ratios sometimes preferred for thermal fits
 - to be safe in case strangeness ends up too far away in rapidity from where originally produced
 - (but can one assume global equilibrium with same T and same μ_B at different rapidities?)
- in this case $\gamma_s \sim 0.7$ 0.8 must be introduced
 - strangeness undersaturation factor:
 - for each particle, a factor $\gamma_s^{N(s+\overline{s})}$
 - e.g.: [Becattini et al.: hep-ph/0310049]
 - could it also mimic residual canonical suppression?

Non equilibrium: Ys & Yq

see e.g.: [Rafelski & Letessier: hep-ph/0309030]

- γ_q controls overall abundance of $q\bar{q}$
- old γ_s becomes γ_s/γ_q
- w.r.t. previous, additional factor γ_q^B for baryons
- fits get beautiful e.g.: @ RHIC →
 [see also Becattini et al.: hep-ph/0310049]
 (but additional parameter)
- @ RHIC 130:

$$\gamma_q = 1.6 \pm 0.2$$
 $\gamma_s / \gamma_q = 1.3 \pm 0.1$

 strangeness actually enhanced above hadronic equilibrium values?

ratio	RHIC-130	non-eq fit	χ^2			
π^+/p	9.5 ± 1.4	9.07	1.15			
π^-/p	13.4 ± 0.9	13.15	0.08			
p/h^-	_	0.0459	-			
Λ_c/h^-	0.059 ± 0.004	0.0509	4.11			
Λ_c/h^-	0.042 ± 0.004	0.0379	1.04			
Ξ_c^-/h^-	0.0079 ± 0.0012	0.00805	0.01			
$\overline{\Xi_c^-}/h^-$	0.0066 ± 0.001	0.00645	0.02			
Ω/h^-	$(12 \pm 5)10^{-4}$	13.210^{-4}	0.06			
$(\overline{\Omega} + \Omega)/h^-$	$(22 \pm 6.5)10^{-4}$	24.810^{-4}	0.19			
Λ_c/p	0.90 ± 0.12	0.747	1.63			
$\overline{\Lambda_c}/\overline{p}$	0.93 ± 0.19	0.826	0.30			
Ξ^{-}/Λ	0.193 ± 0.03	0.189	0.02			
$\overline{\Xi^-}/\overline{\Lambda}$	0.219 ± 0.035	0.207	0.12			
Ω/Ξ^-	_	0.164	_			
$\overline{\Omega}/\overline{\Xi^{-}}$	_	0.180	_			
$(\overline{\Omega} + \Omega)/(\overline{\Xi} + \Xi)$	0.150 ± 0.04	0.171	0.28			
\overline{p}/p	0.71 ± 0.06	0.674	0.36			
Λ_c/Λ_c	0.71 ± 0.04	0.745	0.78			
₹/≘	0.83 ± 0.08	0.801	0.13			
$\overline{\Omega}/\Omega$	0.95 ± 0.1	0.878	0.51			
\dot{K}^{+}/π^{+}	0.17 ± 0.02	0.195	1.59			
K^-/π^-	0.15 ± 0.02	0.180	2.28			
K^-/K^+	0.87 ± 0.07	0.923	0.57			
K^{*0}/K^{-}	0.26 ± 0.08	0.231	0.13			
ϕ/h^{-}	0.02 ± 0.002	0.0212	0.37			
ϕ/K^-	0.15 ± 0.03	0.148	0.00			
ϕ/K^{*0}	0.595 ± 0.24	0.639	0.03			

$\sqrt{s_{NN}}$ [GeV]	200	130	200	130
T [MeV]	143 ± 7	144 ± 3	160 ± 8	160 ± 4
$\mu_b [{ m MeV}]$	21.5 ± 31	29.2 ± 4.5	24.5 ± 3	31.4 ± 4.5
$\mu_s [{ m MeV}]$	2.5 ± 0.2	3.1 ± 0.2	2.9 ± 0.2	3.6 ± 0.2
$\mu_{ m S} [{ m MeV}]$	4.7 ± 0.4	6.6 ± 0.4	5.3 ± 0.4	6.9 ± 0.4
γ_q	$1.6 \pm 0.3^{*}$	$1.6 \pm 0.2^*$	1*	1*
γ_s/γ_q	1.2 ± 0.15	1.3 ± 0.1	1.0 ± 0.1	1.13 ± 0.06
χ^2/dof	2.9/6	15.8/24	4.5/7	32.2/25
$P_{ m true}$	90%+	95%+	65%	15%

- pentaquark production (if statistical) would be particularly sensitive to need for $\gamma_q!$
 - additional γ_q^2 factor for Θ^+ w.r.t. other models e.g.: [Letessier et al.: hep-ph/0310188, Becattini et al.: hep-ph/0310049]

Hyperon enhancements at 40 GeV

- enhancements vs N_{wound} steeper at 40 than at 160
- C to GC predicts a factor 4 5 larger Ξ⁻ enhancement at 40 GeV than at 160, not seen in the data

[Bruno (NA57): yesterday] [Tounsi & Redlich: hep-ph/0111159]

- perhaps yields trying to shoot up but don't go all the way?
 - on the other hand, equilibrium fit not too bad... [Becattini: priv. comm]

Marek's Horn

- Change of behaviour of K^+/π^+ in A-A around 30 GeV
 - K^-/π^- has a smooth behaviour with energy

Could this signal chiral transition?

Brahms: K± vs y

caution! K[±] sensitive to baryon density...

• ... and λ_s [= $2 < s\overline{s} > /(\langle u\overline{u} \rangle + \langle d\overline{d} \rangle)$] max. around 30 GeV:

[Braun-Munzinger et al.: NPA697(2002)902]

• so one expects a broad maximum in K^+/π^+ about there...

- but nothing so sharp!
 - → it looks like we have some anomaly...

Absolute values of hyperon dN/dy

see talk by D.Elia, Friday, P2

- absolute values of Λ and Ξ^+ dN/dy go up with \sqrt{s} ...
- absolute values of A and Ξ⁻ dN/dy
 constant from √s_{NN} = 8.8 to 130 GeV!
- Statistical fits: T and μ_B only sensitive to particle ratios
 - overall normalization of yields controlled by fitted V parameter
- T, μ_B and V all vary with energy, but in such a way as to ensure Λ , Ξ^- yields stays constant ...
 - there must be a simple reason ...

The mysterious **P**

- ullet fundamental to understand γ_s vs C suppression
 - γ_s^2 , but no C suppression
- the NA49 NA50 discrepancy is still with us...

 \rightarrow NA60 should provide high stats, low p_T $\Phi \rightarrow \mu\mu$

 NA49: small deviation from PDG mass seen in all three Pb+Pb data sets, but not in pp

see [NA49 (Friese): SQM 03]

First & signal from NA60

- peripheral In-In
- expected > 100k $\Phi \rightarrow \mu^{+}\mu^{-}$
- expected mass resolution:~ 20 MeV
- also looking at $\Phi \rightarrow K^+K^-$

Penix

• $\Phi \rightarrow K^+K^-$ (min bias 200 GeV)

Mass and width agree within errors with PDG values

• $\Phi \rightarrow e^+e^-$ (min bias 200 GeV)

Preliminary yields:

$$\phi \rightarrow e^+ e^- : \frac{dN}{dy} = 5.4 \pm 2.5 (stat)_{-2.8}^{+3.4} (sys)$$

$$\phi \rightarrow K^+K^-: \frac{dN}{dy} = 2.01 \pm 0.22 \,(stat)_{-0.52}^{+1.01} \,(sys)$$

Extras...

some results on spectra that I could not resist showing...

Very low $p_T \pi$, K, p from Phobos!

- tracks characterized by range and energy loss in Si layers
 - → particle id.
 - → momentum within 5%

 unique constraints for transport, hydro, thermal models

Rcp for multistrange!

- Φ seems to follow K^0_s more than Λ
 - → meson-baryon, not mass?

v2 for multistrange!

 scaling seems to work (not for pions...)
 → parton recombination? 0.15 \vdash n=2 $\diamond \pi^+ + \pi^- PHENIX$ • Λ + $\overline{\Lambda}$ STAR △ K++K- PHENIX + Ξ + $\overline{\Xi}$ STAR $^{\blacktriangle}$ K_{S}^{0} STAR 0.1 0.05 **STAR Preliminary** Transverse Momentum p_⊤/n (GeV/c)

scaled with n(quarks)

m_T scaling in pp...

not absolute...

...but if one rescales:

... but not in Au-Au

data

data / power law

Conclusions

- Evidence for high degree of chemical equilibration
 - even for rare, multistrange particles
 - → QGP prediction!
 - → freeze-out curve traces expected phase boundary at SPS - RHIC
 - →hadronic transport does not seem to be able to do it (no time!)
- RHIC opening up exciting new windows for strangeness!
 - elliptic flow, high p_T, high statistics reference data (pp, dAu)
- Strangeness perhaps enhanced above hadronic equilibrium!
 - stand-alone smoking gun?

- we must understand (non-)equilibrium
 - we need highest possible precision data on yields and ratios (RHIC!)
 - (we need theory to provide agreed statistical approach)
 - we need to understand the Φ
 - precision data from NA60 and Phenix
- we must understand what's going on in the region

√s_{NN} = 5 - 10 GeV

- low E SPS?
- SIS 200 @ GSI!

Credits

- Many thanks for discussions and material to:
 - Francesco Becattini
 - Rene Bellwied
 - Giuseppe Bruno
 - Helen Caines
 - Domenico Elia
 - Marek Gazdzicki
 - Adam Jacholkowski

- Carlos Lourenço
- Djamel Ouerdane
- Emanuele Quercigh
- Jan Rafelski
- Karel Šafařík
- Reinhard Stock
- Julia Velkovska